OFsHO!

Lot L6
@

Edition 2024

SL DPI

Protocol Dictionary

72 slinkin.tech

® Contents

Protocol dictionaryccccociiiiiiiiieeceeeeee e, 02
PRYSICAL e 02
Data LinK ..o 02
NETWOIK .o 07
TranSPOrT oo 10
SESSION e 23
Presentation ..., 40

APPLICAtION oo, 40

8 Protocol dictionary

X Physical

None

\. Data Link

@ Ethernet

> STATUS

N
Ethernet ieee802.3 Fully basic, network, internet

> FIELDS

mm

Two-octet field which is used to
indicate which protocol is
encapsulated in the payload of the

ethernet_type uint16 2 FFFF A fff frame. 0x0000 - 0x05DC —
IEEE802.3 length
Field. 0x0101-0x01FF - experimental.
byte-
dst_mac seque 6 FEFEFffFef et Destination MAC address.
nce
byte-
src_mac seque 6 FAFEFFFFef e Source MAC address.
nce
root uint8 1 Tt Payload data.

Slinkin Technologies, 2024

® ARP

> STATUS
B N N

rfc826 Fully basic, network, internet

> LAYER DETECTION METHODS

« Explicit detection (Ethernet Type)

> FIELDS
byte- Target protocol address. (Internetwork
tpa sequence Y AR address of the intended receiver)
Target hardware address. In request, this
byte- field is not used. In reply, indicates the
) sequence Y WA address of the host that originated the
ARP request.
spa byte- 0 FEEFFEEFFFRFEFE Sender protocol address. (Internetwork
sequence address of the sender)
Sender hardware address. In request,
byte- indicates the address of the host sending
sha sZ uence 0 FEFEFFfFef e the request. In reply, indicates the
q address of the host that the request was
looking for.
op uint16 2 A efff Operation. 1: request, 2: reply.
sl uints 1 FEEFFEEFFFREERE Protoc.o.l length. (Internetwork addresses
length; in octets)
hlen uint8 1 e Hardware address length. (in octets)
ptype uint16 2 FEEFFEEFFFRFEFT Protocol type. Specifies internetwork
protocol.
htype uint16 2 FEFFEEFFFRFERE Hardware type. (Network link protocol
type)
root uint8 1 T ff Payload data.

Slinkin Technologies, 2024

® RARP

> STATUS
RARP rfc903 Fully basic, network, internet

> LAYER DETECTION METHODS

« Explicit detection (Ethernet Type)

> FIELDS

All ARP fields are valid for RARP as well.

® VLAN C-TAG

> STATUS
m
Vlan C-Tag ieee802.1q Fully basic, network, internet

> LAYER DETECTION METHODS

« Explicit detection (Ethernet Type)

> FIELDS

Two-octet field which is used to indicate
which protocol is encapsulated in the

ethemeet—t uint16 2 RFFFFFFFEFEET payload of the frame. 0x0000 -
P 0x05DC - IEEE802.3 length
Field. 0x0101-0x01FF - experimental.
vid 16-bit- 2 fff VLAN identifier.
field

Slinkin Technologies, 2024

16-bit-

dei field 2 1000 Drop eligible indicator.

pcp :&:It_ 2 e000 Priority code point.

tci uint16 2 A e Tag control information.

root uint8 1 FEFFFF et Payload data.
@ GRE
> STATUS
_m

rfc2784 Fully basic, network, internet

> LAYER DETECTION METHODS

« Explicit detection (IP Protocol Type))

> FIELDS

The Reserved1 field is reserved for future
reserved] uint16 2 FEFFEFAFFEFeffff use, and if present, MUST be transmitted
as zero.

The Checksum field contains the IP
(one's complement) checksum sum of

checksum | uint16 2 | TERERTFCAS the all the 16 bit words in the GRE header
and the payload packet.
The Protocol Type field contains the
rotocol t protocol type of the payload packet.
P R - uint16 2 e These Protocol Types are defined
P in rfc1700 as “ETHER TYPES” and in
[ETYPES].
version uintl6 2 v The Version Number field MUST contain

the value zero.

Slinkin Technologies, 2024

A receiver MUST discard a packet where
any of bits 1-5 are non-zero, unless that

EREEE Blot 2 ZAife receiver implements rfc1700.
Bits 6-12 are reserved for future use.
If the Checksum Present bit is set to one,
checksum . then the Checksum and the Reserved]
_flag pte 2 EOR fields are present and the Checksum

field contains valid information.

root uint8 1 A fff Payload data.

\. Network

® IPv4

> STATUS

m
IPv4 rfc791 Partly basic, network, internet

> LAYER DETECTION METHODS

« Explicit detection (Ethernet Type)

> FIELDS
mm
options byte- FEFFFFFF The options section.
sequence
dst_ip uint32 FEFFFFAFFf e The destination address.
src_ip uint32 FEFFFFFFef it The source address.
checksum uint16 FEFFFF At A checksum on the header only.
This field indicates the next level
protocol uint8 FEFFFFFFef it protocol used in the data portion of the
internet datagram.
This field indicates the maximum time
ttl uint8 FEFFFFFF e the datagram is allowed to remain in
the internet system.
fragment_ . This field indicates where in the
offset (el e Tt datagram this fragment belongs.
mf_flag 16-bit-field 2000 0 (last fragment), 1 (more fragments).
dm_flag 16-bit-field 4000 0 (may fragment), 1 (don’t fragment).
res?l;vged_ 16-bit-field 8000 Reserved bit. Must be zero.

Slinkin Technologies, 2024

An identifying value assigned by the
id uint16 2 e sender to aid in assembling the
fragments of a datagram.

Total Length is the length of the

total_len uint16 2 e datagram, measured in octets, including
gth ,
internet header and data.
ecn 8-bit-field 1 3 Explicit Congestion Notification.
dscp 8-bit-field 1 fc Differentiated Services Code Point.

Type of Service provides an indication of
tos uint8 1 e the abstract parameters of the quality of
service desired.

Internet Header Length is the length of
ihl 8-bit-field 1 f the internet header in 32 bit words, and
thus points to the beginning of the data.

The Version field indicates the format of

ip_version 8-bit-field 1 fO the internet header.
root uint8 1 Tt Payload data.
> LIMITATION

» Options are not supported

® ICMP

> STATUS

m

ICMP rfc792 Partly basic, network, internet

> LAYER DETECTION METHODS

« Explicit detection (IP Protocol Type)

Slinkin Technologies, 2024

> FIELDS

. . Four-byte field, contents vary based on
padding uint32 4 e the ICMP type and code.
The 16-bit ones’s complement of the
checksum uint16 2 e one’'s complement sum of the ICMP
message starting with the ICMP Type.

Additional context information for the

code uint8 1 liiiiidii

message.
type uint8 1 FEFEFFfEef et Type of message.
root uint8 1 e Payload data.

Slinkin Technologies, 2024

X Transport

® IPV4
> STATUS
I N ™

rfc768 Fully basic, network, internet

> LAYER DETECTION METHODS

« Explicit detection (IP Protocol Type)

> FIELDS

Checksum is the 16-bit one’s
complement of the one’s complement
sum of a pseudo header of information

checksum uint16 2 FEFFEfFFfEFfofff from the IP header, the UDP header, and
the data, padded with zero octets at the
end (if necessary) to make a multiple of
two octets.

Length is the length in octets of this user

length uint16 2 e datagram including this header and the
data.
dst_port uint16 2 FAFFFFFFeF et Destination port.
src_port uint16 2 FFFEfF e ff Source port.
root uint8 1 e Payload data.

Slinkin Technologies, 2024

® TCP

> STATUS
I A NN

rfc793 Partly basic, network, internet

> LAYER DETECTION METHODS

« Explicit detection (IP Protocol Type)

> FIELDS

mm

This field communicates the current

urgent_poi uint16 2 FEEFFEEFFEEFFEEF valgg of the urgent pointer as a
nter positive offset from the sequence
number in this segment.
The checksum field is the 16 bit one’s
. complement of the one’s complement
checksum uint16 2 FAFFFTFFFTTee sum of all 16 bit words in the header
and text.
The number of data octets beginning
window s with the one indicated in the
T uint16 2 itiiiiiii acknowledgment field which the
ize . S
sender of this segment is willing to
accept.
fin 8-bit-field 1 1 No more data from sender.
syn 8-bit-field 1 2 Synchronize sequence numbers.
rst 8-bit-field 1 4 Reset the connection.
psh 8-bit-field 1 8 Push Function.
ack 8-bit-field 1 10 Acknowledgment field significant.
urg 8-bit-field 1 20 Urgent Pointer field significant.

Slinkin Technologies, 2024

ece 8-bit-field 1 40 ECN-Echo flag.
cwr 8-bit-field 1 80 Congestion Window Reduced flag.
The field which contains tcp flags
flags uint8 1 e which are used to indicate a particular
state of connection.
reserved 8-bit-field 1 f Reserved for future use. Must be zero.
data_off 8-bit-field 1 0 The number of 32 bit words in the TCP
set Header.
If the ACK control bit is set this field
ack_num uint32 4 FEFFELFFEEFFEEF contains the value of the next sequence
ber number the sender of the segment is
expecting to receive.
sequence The sequence number of the first data
d - uint32 4 e octet in this segment (except when
number .
SYN is present).
dst_port uint16 2 FfFFfffef The destination port number.
src_port uint16 2 FFFFFF AT ff The source port number.
root uint8 1 e Payload data.
> LIMITATION

« Options are not supported

@ QuIC
> STATUS

m

rfc9000
rfc9001

Quic

Slinkin Technologies, 2024

basic, network, internet

> LAYER DETECTION METHODS

» Port-based
« Layer structure test

> PORTS
+ 443 (udp)

> FIELDS

mm

Additional diagnostic information for
byte- 0 FEEFFFEFFEEFAFFF Fhe closure. This can be zero lgngth
sequence if the sender chooses not to give

details beyond the Error Code value.

reason_phrase

A variable-length integer specifying
0 FEFFFffF e ff the length of the reason phrase in
bytes.

reason_phrase byte-
_length sequence

A variable-length integer encoding
the type of frame that triggered the
error. A value of O (equivalent to the

0 e mention of the PADDING frame) is
used when the frame type is
unknown. The field is presented only
when frame type is 0x1d.

triggered_fram byte-
e_type sequence

A variable-length integer that

indicates the reason for closing this
0 e connection. Error codes

for Ox1c and 0Ox1d frame types have

different description.

byte-

error_code
sequence

byte- 0 FEEFFEEFFEEFAFFF The bytes from the designated

SHESe LS sequence stream to be delivered.

A variable-length integer specifying
the length of the Stream Data field
in this STREAM frame. This field is
0 e present when the LEN bit is set to 1.
When the LEN bit is set to 0, the
Stream Data field consumes all the
remaining bytes in the packet.

stream_data_l byte-
ength sequence

A variable-length integer specifying
the byte offset in the stream for the
byte- data in this STREAM frame. This
sequence Y A field is present when the OFF bit is
set to 1. When the Offset field is

absent, the offset is 0.

stream_offset

stateless_rese
t_token

connection_id

connection_id
_length

retire_prior_to

path_response
__data

path_challeng
e_data

new_sequence
_number

retire_sequenc
e_number

allowed_maxi
mum_streams

cumulative_m
aximum_stre
ams

blocked_maxi
mum_stream_
data

maximum_stre
am_data

blocked_maxi
mum_data

byte-
sequence

byte-
sequence

uint8

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

16

FFFFFFFF T ff

FFFFF e ff

FEFFEFEFFF £ £

e ff

FFFFFF A ff

FFEFFFEFEFEFEFEF

FEFEFEFF i ff

FFFFEFFFfff

i

e ff

FFFFF A ff

FEEFEFEF T

T ff

A 128-bit value that will be used
for a stateless reset when the
associated connection ID is used.

A connection ID of the specified
length.

An 8-bit unsigned integer
containing the length of the
connection ID.

An 8-bit unsigned integer
containing the length of the
connection ID.

This 8-byte field contains arbitrary
data.

This 8-byte field contains arbitrary
data.

The sequence number assigned to
the connection ID by the sender,
encoded as a variable-length
integer.

The sequence number of the
connection ID being retired.

A count of the cumulative number
of streams of the corresponding
type that can be opened over the
lifetime of the connection.

A count of the cumulative number
of streams of the corresponding
type that can be opened over the
lifetime of the connection.

A variable-length integer
indicating the maximum amount of
data that can be sent on the
identified stream, in units of bytes.

A variable-length integer
indicating the maximum amount of
data that can be sent on the
identified stream, in units of bytes.

A variable-length integer
indicating the connection-level
limit at which blocking occurred.

maximum_d
ata

crypto_data

crypto_data_le
ngth

crypto_offset

final_size

stop_applicati
on_protocol_e
rror_code

reset_applicati
on_protocol_e
rror_code

stream_id

blocked_strea
m_id

max_data_stre
am_id

stop_stream
_id

reset_stream
_id

byte-
sequence

byte-
sequence

uint8

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

FFFFFF e ff

FFFFFFFF e ff

FFFFF e ff

FFFFFF A ff

FFFFF A ff

FFFFEFFFEFFFFFF

FFFFEFFFf e

FFFFEFF T ff

i

FEFFFFEFFF £ £

e ff

T ff

A variable-length integer
indicating the maximum amount of
data that can be sent on the entire
connection, in units of bytes.

The cryptographic message data.

A variable-length integer
specifying the length of the Crypto
Data field in this CRYPTO frame.

A variable-length integer
specifying the byte offset in the
stream for the data in

this CRYPTO frame.

A variable-length integer
indicating the final size of the
stream by

the RESET_STREAM sender, in
units of bytes.

A variable-length integer
containing the application-
specified reason the sender is
ignoring the stream.

A variable-length integer
containing the application protocol
error code that indicates why the
stream is being closed.

A variable-length integer
indicating the stream ID of the
stream.

A variable-length integer
indicating the stream that is
blocked due to flow control.

The stream ID of the affected
stream, encoded as a variable-
length integer.

A variable-length integer carrying
the stream ID of the stream being
ignored.

A variable-length integer encoding
of the stream ID of the stream
being terminated.

ecn_ce_count

ect_1_count

ect_0_count

ecn_counts

ack_range_len
gth

gap

ack_range

first_ack_ra
nge

ack_range_co
unt

ack_delay

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

FFFF e ff

FFFFFFF e ff

FEFFFFFFFFeF e ff

FFFFFFFF e ff

TP ff

FFFFEFFFFFFFFFF

FFFFEFFFfff e

FFFFEFFFfffff

FFEFEFFFEFEFEFEF

FFFFFFFFFfffffff

A variable-length integer
representing the total number of
packets received with the ECN-

CE codepoint in the packet number
space of the ACK frame.

A variable-length integer
representing the total number of
packets received with

the ECT(1) codepoint in the packet
number space of the ACK frame.

A variable-length integer
representing the total number of
packets received with

the ECT(0) codepoint in the packet
number space of the ACK frame.

The three ECN counts. ECN counts
are only present when
the ACK frame type is 0x03.

A variable-length integer
indicating the number of
contiguous acknowledged packets
preceding the largest packet
number, as determined by the
preceding Gap.

A variable-length integer
indicating the number of
contiguous unacknowledged
packets preceding the packet
number one lower than the
smallest in the preceding ACK
Range.

Contains additional ranges of
packets that are alternately not
acknowledged (Gap) and
acknowledged (ACK Range).

A variable-length integer
indicating the number of
contiguous packets preceding the
Largest Acknowledged that are
being acknowledged.

A variable-length integer
specifying the number of ACK
Range fields in the frame.

A variable-length integer encoding
the acknowledgment delay in
microseconds.

largest_ackno
wledged

padding_data

frame_type

frame

retry_integrity
_tag

retry_token

protected_d
ata

packet_num
ber

packet_data

length

byte-
sequence

byte-

sequence

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

16

FEFFFFFFFFEF e ff

FFFFFFFF T ff

FFFF e ff

FFFFFF AT ff

FFFFF A ff

FFEFEFF i ff

FFFFEFFFfff

FFEFEFEFEFFFEFF

i

FFFFF A ff

A variable-length integer
representing the largest packet
number the peer is acknowledging;
this is usually the largest packet
number that the peer has received
prior to generating the ACK frame.

The field contains the bytes of
padding frame types. The field
exists for brevity purposes to not
pollute padding fields.

Frame type.

Frame section. The payload

of QUIC packets, after removing
packet protection, consists of a
sequence of complete frames.

The Retry Integrity Tag is a 128-bit
field that is computed as the
output of AEAD_AES_128_GCM.

An opaque token that the server
can use to validate the client’s
address.

The “abstract” field which is
presented for the data section
which cannot be dissected. E.g.
when session context

or Initial packet of the session are
missed.

This field is 1to 4 bytes long. The
field is presented only inside a
decrypted layer because the field
data is protected.

Packet data section - includes
packet number and packet payload
fields.

This is the length of the remainder
of the packet (that is, the Packet
Number and Payload fields) in
bytes, encoded as a variable-
length integer.

supported_ver
sion

token

token_length

source_connec
tion_id

source_connec
tion_id_length

destination_co
nnection_id

destination_co
nnection_id_le
ngth

version

unprotected_p
acket_number
_length

unprotected_k
ey_phase

unprotected_1r
tt_reserved_b
its

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

uint32

uint8

uint8

uint8

16

FFFFF e ff

FFFFFF A ff

FFFFF e ff

FFFFF AT ff

e ff

FFFFEFFFEFFFFFF

FFFFEFFFf e

FFFFEF£F £ £ £ £

18

Supported version.

The value of the token that was
previously provided in a Retry
packet or NEW_TOKEN frame.

A variable-length integer
specifying the length of

the Token field, in bytes. This value
is 0 if no token is present.

The source connection id.

The length of source connection id
field.

The destination connection id.

The length of destination
connection id field.

The QUIC Version is a 32-bit field
that follows the first byte. This
field indicates the version

of QUIC that is in use and
determines how the rest of the
protocol fields are interpreted.

The field specifies the size of
packet number length field. The
field is presented only inside a
decrypted layer because the field
data is protected.

The field indicates the key phase,
which allows a recipient of a
packet to identify the packet
protection keys that are used to
protect the packet. The field is
presented only inside a decrypted
layer because the field data is
protected.

Reserved header bits of 1-

RTT packet. The field is presented
only inside a decrypted layer
because the field data is protected.

unprotected_r
eserved_bits

protected_pac
ket_number_l
ength

protected_key
_phase

protected_1rtt
_reserved_bits

protected_rese
rved_bits

long_packet_t
ype

fixed_bit

spin_bit

version_negoti
ation_unused

retry_unused

header_form

uint8

uint8

uint8

uint8

uint8

uint8

uint8

uint8

uint8

uint8

uint8

18

30

40

20

7f

80

Reserved header bits of O-

RTT and Handshake packets. The
field is presented only inside a
decrypted layer because the field
data is protected.

The field specifies the size of
packet number length field. The
field is protected. The field is
protected.

The field indicates the key phase,
which allows a recipient of a
packet to identify the packet
protection keys that are used to
protect the packet. The field is
protected.

Reserved header bits of 1-
RTT packet. The field is protected.

Reserved header bits of O-
RTT and Handshake packets. The
field is protected.

The field specifies packet type in
the long header. Initial (0), 0-
RTT (1), Handshake (2), Retry (3).

Packets containing a zero value for
this bit are not valid packets in this
version and MUST be discarded. A
value of 1 for this bit

allows QUIC to coexist with other
protocols.

The latency spin bit, which is
defined for 1-RTT packets, enables
passive latency monitoring from
observation points on the network
path throughout the duration of a
connection.

Unused header bits of version
negotiation packet.

Unused header bits of retry packet.

The field specifies header type. It
is set to O for short headers and is
set to 1for long headers.

Quic header. The structure of
header uint8 1 FEFFEf e ffff header can be different between
different packet types.

root uint8 1 FEFFFfF et Payload data.

> FIELD TREE

e Root

— header

— version
—destination_connection_id_length
— destination_connection_id

— source_connection_id_length

— source_connection_id

— token_length

— token
— supported_version

— length

— packet_data

— packet_number
— protected_data
— retry_token

— retry_integrity_tag
L— frame

e Header

L— header/
— header_form
— retry_unused (Retry Packet)
— version_negotiation_unused (Version Negotiation Packet)
F— spin_bit (1-RTT Packet Only)
— fixed_bit (Handshake O-RTT and 1-RTT)
— long_packet_type (Handshake and 0-RTT)
— protected_reserved_bits (Handshake O-RTT)
— protected_1rtt_reserved_bits (1-RTT)
— protected_key_phase (1-RTT Packet Only)
— protected_packet_number_length (Handshake and 0-RTT)
F— unprotected_reserved_bits (Handshake and 0-RTT)
F— unprotected_1rtt_reserved_bits (1-RTT)
F— unprotected_key_phase (1-RTT Packet Only)
L— unprotected_packet_number_length (Handshake and O-RTT)

e Frame

L— frame/
— frame_type
— padding_data (Padding)
— largest_acknowledged (Ack)
— ack_delay (Ack)
— ack_range_count (Ack)
— first_ack_range (Ack)
— ack_range (Ack)
F— ecn_counts (Ack)
— reset_stream_id (ResetStream)
|— stop_stream_id (StopSending)
F— max_data_stream_id (MaxStreamData)
— blocked_stream_id (StreamDataBlocked)
— stream_id (Stream)
— reset_application_protocol_error_code (ResetStream)
— stop_application_protocol_error_code (StopSending)
— final_size (ResetStream)
— crypto_offset (Crypto)
— crypto_data_length (Crypto)
— crypto_data (Crypto)
F— maximum_data (MaxData)
— blocked_maximum_data (DataBlocked)
F— maximum_stream_data (MaxStreamData)
— blocked_maximum_stream_data (StreamDataBlocked)
F— cumulative_maximum_streams (MaxStreams)
— allowed_maximum_streams (StreamsBlocked)
— retire_sequence_number (RetireConnectionld)
F— new_sequence_number (NewConnectionld)
— path_challenge_data (PathChallenge)
— path_response_data (PathResponse)
— retire_prior_to (NewConnectionld)
— connection_id_length (NewConnectionld)
— connection_id (NewConnectionld)
— stateless_reset_token (NewConnectionld)
— stream_offset (Stream)
— stream_data_length (Stream)
— stream_data (Stream)
— error_code (ConnectionClose)
— triggered_frame_type (ConnectionClose)
L— reason_phrase_length (ConnectionClo

» AckRange

L— ack_range (Ack)

F— gap (Ack)
L— ack_range_length (Ack)

e EcnCounts

L— ecn_counts (Ack)
F—ect_0_count (Ack)
— ect_1_count (Ack)
L— ecn_ce_count (Ack)

> LIMITATION

« Due to specification, Retry Packet
contains Retry Token and Retry Integrity Tag.
Because of Retry Token length is not specified
explicitly, these 2 fields are combined in one
field RetryData

« Encoder from human to byte sequence

generates sequence accordingly number value.

E.g. if number in [0-63] 0-16383 it generates 1
byte sequence, if [0-16383] 0-16383 it
generates 2 bytes sequence, and so on.

Such note is presented here because
specification doesn't explain a case when value
is less than minimum interval value, e.g. value
is 16, but the field length is 2 bytes.

Quic frames can be dissected only for initial
packets (for the rest packets TLS keys are
required). Because of that, flow/session cannot
be closed when CONNECTION_CLOSE is sent
because of it is encrypted. Like that, quic flow/
session is closed/released by timeout.

\. Session
® TLS

> STATUS

m

rfc5246 (v1.2)

rfc6066 (Extensions)

rfc8446 (v1.3)

rfc3749 (Compression methods)
rfc3943 (LZS compression id)
rfc5077 (New Session Ticket)
rfc7301 (Application-Layer
Protocol Negotiation Extension)
rfc4492 (Elliptic Curve
Cryptography (ECC))

rfc5289 (Ecdhe Cipher Suites)
rfc2246 (v1.0)

rfc4346 (v1.1)

rfc6101 (ssl v3.0)

TLS Partly basic, network, internet

> LAYER DETECTION METHODS

» Port-based
« Layer structure test

> PORTS
« 443 (tcp)

. 993 (tcp; IMAPS)
. 995 (tcp; POP3S)

Slinkin Technologies, 2024

> FIELDS

mm

The field specifies the cofactor h =
#E(Fq)/n, where #E(Fq) represents
the number of points on the elliptic

byte- curve E defined over the
CEEIN BT sequence Y AR GRS field Fqg (either Fp or F2"m). The
field exists
for explicit_prime or explicit_char2 c
urve_type.

The field specifies the cofactor h
ecdh_cofactor uints 1 FEEFFEEFFEEFRFFF value le'ngth. The field eX'ISjES
_length for explicit_prime or explicit_char2 c
urve_type.

The field specifies the order n of the
byte- 0 FEFFEEFFFAFEFE base polln.t. Th.e field eXIS'.ES.
sequence for explicit_prime or explicit_char2 c

urve_type.

ecdh_order

The field specifies the order n of the

base point value length. The field
uint8 1 e exists

for explicit_prime or explicit_char2 c

urve_type.

ecdh_order_le
ngth

The field specifies the base point G
byte- 1 FEFFEEFFERFEFT on the e.ll.|pt|c curve. The ﬁgld exists
sequence for explicit_prime or explicit_char2 c

urve_type.

ecdh_base

The field specifies the base point G
ecdh_base_le uints 1 FEFFEEFFFREEFEE value le.ngth. The field eX.ISjES
ngth for explicit_prime or explicit_char2 c
urve_type.

The b value of the elliptic curve. The
byte- 0 FFFFFFAFFFFFLFer field exists iy
sequence for explicit_prime or explicit_char2 c

urve_type.

ecdh_curve_b

The b value of the elliptic curve
ecdh_curve_b uints 1 FEFFEEFFFAFEFE length. The ﬁgld exists .
_length for explicit_prime or explicit_char2 c
urve_type.

The a value of the elliptic curve. The
R 0 FHFFFFFFFFAFeT ZCICIES -
sequence for explicit_prime or explicit_char2 c

urve_type.

ecdh_curve_a

ecdh_curve_a

_length

ecdh_curve

ecdh_k3

ecdh_k3_len
gth

ecdh_k2

ecdh_k2_len
gth

ecdh_Kk1

ecdh_k1_len
gth

ecdh_k

ecdh_k_length

ecdh_basis

uint8

byte-
sequence

byte-
sequence

uint8

byte-
sequence

uint8

byte-
sequence

uint8

byte-
sequence

uint8

uint8

FFFFFFF e ff

e ff

FFFFFFFFFfffffff

FEFFFFEFFFer i of

FEFFFFFFFFEF i ff

i

T ff

FFFFEFFFfff e

FEFEFEFF e

e ff

FEFFFFFFFFEF i ff

The a value of the elliptic curve
length. The field exists

for explicit_prime or explicit_char2
curve_type.

The field specifies the coefficients
a and b of the elliptic curve E. The
field exists

for explicit_prime or explicit_char2
curve_type.

The exponents for the pentanomial
representation x*m \| x*k3 \| x*k2
\| Xx*k1\| 1 (such that k3 > k2 > k1).
The field exists only

for explicit_char2 curve_type

and ec_pentanomial basis.

The exponent k value length.

The exponents for the pentanomial
representation x*m \| x*k3 \| x"k2
\| x*k1\| 1 (such that k3 > k2 > k1).
The field exists only

for explicit_char2 curve_type

and ec_pentanomial basis.

The exponent k2 value length.

The exponents for the pentanomial
representation x*m \| x*k3 \| x"k2
\| x*k1\| 1 (such that k3 > k2 > k1).
The field exists only

for explicit_char2 curve_type

and ec_pentanomial basis.

The exponent k1 value length.

The exponent k for the trinomial
basis representation x"m \| x*k \|
1. The field exists

for explicit_char2 curve_type

and ec_trinomial basis.

The exponent k value length.

The basis type. Possible

values: ec_basis_trinomial (1), ec_
basis_pentanomial (2). The field
exists only

for explicit_char2 curve_type.

ecdh_m

ecdh_prime

ecdh_prime_Lle
ngth

ecdh_signat
ure

ecdh_signatur
e_length

ecdh_signatur
e_and_hash_a
lgorithm

named_curve

curve_type

fortezza_rs

rsa_exponent

rsa_exponent_
length

rsa_modulus

rsa_modulus_l
ength

dh_signature

dh_signature_l
ength

uint16

byte-
sequence

uint8

byte-
sequence

uint16

uint16

uint16

uint8

byte-
sequence

byte-
sequence

uint16

byte-
sequence

uint16

byte-
sequence

uint16

128

FFFFF A ff

FEFFFFFFFFEf i ff

FFFFF A ff

FFFF e ff

FEFFFFEFFFer i of

i

FEFEFFFFFf e

FFFFEFFFfff i ff

i

FEFFFFEFFF £ £

TP ff

FFFFEFFFfffff

FFEFEFEFEFEFEFF

FFFFEFFFfff i ff

FFEFEFEFEFEFEFEF

The degree of the characteristic-2
field F2”m. The field exists only
for explicit_char2 curve_type.

The odd prime defining the field
Fp. The field exists only
for explicit_prime curve_type.

The odd prime value length. The
field exists only
for explicit_prime curve_type.

The ecdh signature.

The length of ecdh signature field.

The ecdh hash and signature
algorithm pair.

The field specifies a recommended
set of elliptic curve domain
parameters. All those values

of NamedCurve are allowed that
refer to a specific curve.

The field identifies the type of the
elliptic curve domain parameters.

Server random number
for FORTEZZA KEA (Key Exchange
Algorithm).

The public exponent of the server’s
temporary RSA key.

The length of rsa exponent field.

The modulus of the server's
temporary RSA key.

The length of rsa modulus field.

The dh signature.

The length of dh signature field.

dh_signature_
and_hash_alg
orithm

dh_ys

dh_ys_length

dh_g

dh_g_length

fortezza_mast
er_write_iv

fortezza_serve
r_write_iv

fortezza_client
_write_iv

fortezza_wrap
ped_server_wr
ite_key

fortezza_wrap
ped_client_wri
te_key

fortezza_yc_si
gnature

fortezza_rc

fortezza_yc

fortezza_yc_le
ngth

ecdh_public_
key

uint16

byte-
sequence

uint16

byte-
sequence

uint16

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

uint8

byte-
sequence

24

24

24

12

12

40

128

FFFFFFF e ff

e ff

FEFFEFEFFF £ £

FEFFFFFFFFeF e ff

FFFFF AT ff

FEEFEFEF T

i

FFEFEFFFf e of

FREFEFEFEFEFEFF

FFFFFF e ff

FFFFF A ff

i

FFFFEFF i ff

FEEFEFEF T

T ff

The dh hash and signature
algorithm pair.

The server’s Diffie-Hellman public
value (g”"X mod p).

The server’s Diffie-Hellman public
value field length.

The generator used for the Diffie-
Hellman operation.

The generator field length.

This is the IV for the TEK used to
encrypt the premaster secret.

The IV for the server write key.

The IV for the client write key.

This is the server’s write key,
wrapped by the TEK.

This is the client’s write key,
wrapped by the TEK.

The tsignature of the KEA public
key, signed with the client’'s DSS
private key.

The client’s Rc value for the KEA
calculation.

The client’s Yc value (public key)
for the KEA calculation.

The client’s Yc value (public key)
length.

Client/Server Elliptic Curve Diffie-
Hellman public value. For Server
Key Exchange maessage that field
exists only

when curve_type has named_curv
e (3) value.

ecdh_public_k
ey_length

ecdhe_public_
key

ecdhe_public_
key_length

dhe_public_
key

dhe_public_ke
y_length

dh_public_key

dh_public_key
_length

premaster_key

premaster_key
_length

certificate

certificate_len
gth

certificate_list

rsa_modulus_l
ength

dh_signature

certificate_list
_length

message_hash
_data

uint8

byte-
sequence

uint8

byte-
sequence

uint16

byte-
sequence

uint16

byte-
sequence

uint16
byte-
sequence
byte-

sequence

byte-
sequence

uint16
byte-
sequence
byte-

sequence

byte-
sequence

FEFFFFFFFFEF e ff

FFFFF A ff

e ff

FEFFFFFFFFEf i ff

TP ff

FEFEFEFF i ff

FFEFEFFFEFEFEFEF

i

FFFFFFFFfff

FFFFF A ff

e ff

FFEFEFEFEFFFEFF

FFEFEFEFEFFF T

FEFEFEFF A ff

FFEFEFFFEFEFEFEF

FFFFEFFFfffff

Client/Server Elliptic Curve Diffie-
Hellman public value length. For
Server Key Exchange maessage
that field exists only

when curve_type has named_curv
e(3) value.

Client Elliptic Curve Ephemeral
Diffie-Hellman public value.

Client Elliptic Curve Ephemeral
Diffie-Hellman public value length.

Client Ephemeral Diffie-Hellman
public value.

Client Ephemeral Diffie-Hellman
public value length

Client Diffie-Hellman public value.

Client Diffie-Hellman public value
length.

The value which client generates
and sends as encrypted premaster
secret message. The field exists
only for RSA key agreement.

The length of premaster key.

The certificate data.

The length of certificate.

The certificate list data. The
certificate list can contain more
than one certificate.

The length of rsa modulus field.

The dh signature.

The length of certificate list field.

The data section of message hash
handshake protocol.

session_ticket

session_ticket
_length

session_ticket
_lifetime

sha_hash

md5_hash

verify_data

request_upd
ate

signature

signature_len
gth

signature_and
_hash_algori
thm

signature_and
_hash_algorit
hms

signature_and
_hash_algorith
ms_length

signature_sch
eme

quic_transport
_parameter_va
lue

byte-
sequence

uint16

uint32

byte-
sequence

byte-
sequence

byte-
sequence

uint8

byte-
sequence

uint16

uint16

byte-
sequence

uint16

uint16

byte-
sequence

20

16

FEFFFFFFFFEF e ff

FFFFFFFF e ff

FEFFFFFFFFEF e ff

FFFFFFF e ff

e ff

FEFEFEFF i ff

FEFEFFFFFffff

FFFFEFFFfff i ff

FEEFEFEF T

FFFFFFFffffff

TP ff

FFEFEFF A ff

FEFEFEFFFfffof

FFEFEFF A ff

The session ticket field.

The length of session ticket field.

Indicates the lifetime in seconds as
a 32-bit unsigned integer in
network byte order from the time
of ticket issuance.

The part of finished message. The
field can exist only for ssl
v3.0 sessions. The length is fixed.

The part of finished message. The
field can exist only for ssl
v3.0 sessions. The length is fixed.

The part of finished message. For
tls v1.0 the length is fixed.

If the request_update field is set
to update_requested (0), then the
receiver MUST send

a KeyUpdate of its own with
request_update set

to update_not_requested (1) prior
to sending its next Application
Data record.

A digital signature using
algorithms over the contents of the
element.

The length of signature field.

The hash and signature algorithm
pair.

Signature and hash algorithm
elements.

The length of signature and hash
algorithms field.

The field specifies hash and
signature algorithm. The field can
exist only for tls v1.3 sessions.

The quic transport parameter
value.

quic_transport
_parameter_Lle
ngth

quic_transport
_parameter_id

quic_transport
_parameter

supported_ver
sion

supported_ver
sions

supported_ver
sions_length

protocol_name

protocol_name
_length

protocol_name
list

server_name

server_name_|
ength

server_name_t
ype

server_name_l
ist

server_name_|
ist_length

extension_t
ype

extension_len
gth

byte-
sequence

byte-
sequence

byte-
sequence

uint16

byte-
sequence

uint8

ascii-string

uint8

byte-
sequence

ascii-string

uint16

uint8

byte-
sequence

uint16

uint16

uint16

FFFF e ff

FFFFF A ff

TP ff

FFFFFF AT ff

FEFFFFFFFFef i ff

FFFFEFFFfff i ff

FEFFFEFFFfffff

FFFFEFFFfffff

FFEFEFFFf A ff

FFFF e ff

FFFFFF e ff

i

FFEFEFEFEFFF T

FEFEFEFF A ff

FFEFFFFFF A ff

FFFFEFFFfff i ff

The field contains the length of the
Transport Parameter Value field in
bytes.

The identificator of quic transport
parameter.

The quic transport parameter
section.

A supported version.

The list of supported versions in
preference order, with the most
preferred version first.

The length of supported versions

The protocol name string.

The length of protocol name.

The list contains the list of
protocols advertised by the client,
in descending order of preference.

The server name string.

The length of server name.

The type of server
name: 0 (host_name), 255.

The list of server name elements.

The length of server name list

The field identifies the particular
extension type. A part of extension
header. (Client/Server handshake
header field)

The length of extension data.
(Client/Server handshake header
field)

extension

extensions_len
gth

extensions

compression_
method

compression_
methods

compression_
methods_Llen
gth

cipher_suite

cipher_suites

cipher_suites_
length

session_id

session_id_len
gth

byte-
sequence

uint16

byte-
sequence

uint8

uint-8-
arrayseque
nce

uint8

uint16

uint-16-array

uint16

byte-
sequence

uint8

0

2

0

FEFFFFFFFFEF e ff

FFFFFF AT ff

FEFFFFFFFFeF e ff

FFFFF A ff

e ff

i

FFEFEFFFFff

FEFEFEFF A ff

FEFEFFFFFf e

FFFFFFFFFfffffff

e ff

Extension record/unit.

The length of extensions field.

A list of extensions. Clients MAY
request extended functionality
from servers by sending data in the
extensions field. Note that only
extensions offered by the client
can appear in the server’s list.
(Client/Server handshake header
field)

For client: an element of
compression methods. For server:
the single compression algorithm
selected by the server from the
client compression method list.
(Client/Server handshake header
field)

This is a list of the compression
methods supported by the client,
sorted by client preference. (Client
handshake header field)

The length of compression
methods field. (Client handshake
header field)

For client: an element of cipher
suites. For server: the single cipher
suite selected by the server from
the client cipher suite list. (Client/
Server handshake header field)

This is a list of the cryptographic
options supported by the client,
with the client’s first preference
first. (Client handshake header
field)

The length of cipher suites field.
(Client handshake header field)

Id of the session corresponding to
this connection. (Client/Server
handshake header field)

The length of session id. (Client/
Server handshake header field)

random_bytes

random_gmt_
unix_time

random

server_minor_
version

server_major_
version

client_minor_v
ersion

client_major_v
ersion

client_version

handshake_me
ssage

handshake_me
ssage_length

handshake_t
ype

byte-
sequence

uint32

byte-
sequence

uint8

uint8

uint8

uint8

uint16

byte-
sequence

32-bit-field

32-bit-field

28

32

FFFFF AT ff

FFFFF e ff

FEFFFFEFFF £ £

e ff

FFFFFF AT ff

FFFFEFFFff e

FFFFEFFFfff i ff

i

FREFEFEFEFEFEFF

fFffff

ffO00000

28 bytes generated by a secure
random number generator. (Client/
Server handshake header field)

The current time and date in
standard UNIX 32-bit format
(seconds since the midnight
starting Jan 1, 1970, UTC, ignoring
leap seconds) according to the
sender’s internal clock. (Client/
Server handshake header field)

A client/server generated random
structure. The structure which is
generated by the server MUST be
independently generated from the
ClientHello.random. (Client/Server
handshake header field)

The minor number of server TLS
protocol.

The major number of server TLS
protocol.

The minor number of client TLS
client protocol.

The major number of client TLS
protocol.

The version of the TLS protocol by
which the client wishes to
communicate during this session.

The handshake message.

The length of handshake message.

The handshake message

type: 0 (hello_request), 1 (client_h
ello), 2 (server_hello), 1 (certificat
e), 12 (server_key_exchange), 13 (

certificate_request), 14 (server_he
llo_done), 15 (certificate_verify), 1

6 (client_key_exchange), 20 (finis

hed), 255.

handshake_he
ader

change_cipher
_spec_type

alert_descript
ion

alert_level

heartbeat_pad
ding

heartbeat_payl
oad

heartbeat_payl
oad_length

heartbeat_mes

sage_type

record_mess
age

byte-
sequence

uint8

uint8

uint8

byte-
sequence

byte-
sequence

uint16

uint8

byte-
sequence

4

FFFFF A ff

FEFFFFEFFF £ £

TP ff

FFFFF A ff

A Fffeffff

FEFEFEFF A ff

FFEFEFEFEFEFEFEF

i

FFEFFFEFEFEFEFEF

The header of handshake protocol.
The TLS Handshake Protocol is one
of the defined higher-level clients
of the TLS Record Protocol. This
protocol is used to neg otiate the
secure attributes of a session.
Handshake messages are supplied
to the TLS record layer, where they
are encapsulated within one or
more TLSPlaintext structures,
which are processed and
transmitted as specified by the
current active session state.

The change cipher spec protocol
exists to signal transitions in
ciphering strategies. The protocol
consists of a single message,
which is encrypted and
compressed under the current (not
the pending) connection state. The
message consists of a single byte
of value 1.

Alert message description.

Alert message level.

The padding is random content
that MUST be ignored by the
receiver.

The padding_length MUST be at
least 16.

The payload consists of arbitrary
content.

The length of the payload.

The message type,
either heartbeat_request (1)
or heartbeat_response (2).

The application data. This data is
transparent and treated as an
independent block to be dealt with
by the higher-level protocol
specified by the type field.

record_messa
ge_length

record_protoc
ol_minor_vers
ion

record_protoc
ol_major_vers
ion

record_protoc
ol_version

dh_p

record_conten
t_type

dh_p_length

record

server_version

protocol_name
_list_length

fortezza_encry
pted_pre_mas
ter_secret

root

uint16

uint8

uint8

uint16

byte-
sequence

uint8

uint16

byte-
sequence

uint16

uint16

byte-
sequence

uint8

48

FFFFFFFffffff

FEFFFFEFFF e ff

FEFFFFFFFFEf i ff

TP ff

FFFFF A ff

FFFFEFFFfff

FFEFEFF e

FFEFEFEFEFFF T

i

FFFFFF A ff

FFFFFFFF T ff

FEFFFFEFFFer i of

The length (in bytes) of the
following TLSPlaintext.fragment.
The length MUST NOT exceed
2™M4.

The minor number of protocol
version.

The major number of protocol
version.

The version of the protocol being
employed.

The prime modulus used for the
Diffie-Hellman operation.

The higher-level protocol used to
process the enclosed fragment/
message.

The prime modulus field length.

Record layer.

This field will contain the lower of
that suggested by the client in the
clienthello and the highest
supported by the server.

The length of handshake message.

A random value, generated by the
client and used to generate the
master secret.

Payload data.

> FIELD TREE

e Root

L— record/
— record_content_type
— record_protocol_version
— record_protocol_major_version
— record_protocol_minor_version
— record_message_length
L— record_message/
— [Heartbeat]
— heartbeat_message_type
— heartbeat_payload_length
— heartbeat_payload
— heartbeat_padding
— [Certificate Verify]
— signature_scheme
— [Change Cipher Spec Type]
— change_cipher_spec_type
F— [Alert]
— alert_level
— alert_description
— [Handshake]
— handshake_header
F— handshake_type
F— handshake_message_length
L— handshake_message

» Handshake Message

L— handshake_message/
— [ClientHello only]
— client_version
— client_major_version
— client_minor_version
— [ServerHello only]
— server_version
— server_major_version
— server_minor_version
— [ClientHello and ServerHello]
— random
F— random_gmt_unix_time
— random_bytes
— session_id_length

— session_id

— cipher_suites_length

— cipher_suites

— cipher_suite

— compression_methods_length

— compression_methods

— compression_method

— extensions (also can belong Handshake Enctypted Extensions message)
L— extensions_length

« Extensions

L— extensions/
— extensions_length
L— extension/
— extension_type
— extension_length
L— ... (extension related fields)

or

L extensions/
— extensions_length
— extension_type
L— extension_length

when extension size cannot be defined.

e Quic Transport Parameter extension

L— quic_transport_parameter/
— quic_transport_parameter_id
— quic_transport_parameter_length
L— quic_transport_parameter_value

e EcDhCurve

L— ecdh_curve/
— ecdh_curve_a_length
— ecdh_curve_a
— ecdh_curve_b_length
L— ecdh_curve_b

> SUB-PROTOCOL SUPPORT LIST

Alert protocol
Application Data protocol
Heartbeat protocol

Handshake protocol

HelloRequest

ClientHello

ServerHello

NewSessionTicket (rfc5077)
EndOfEarlyData (rfc8446)
EncryptedExtensions (rfc8446)
Certificate

(ORI <R C I

(<]

ServerKeyExchange

CertificateRequest (1.2 and 1.3 have differences)
ServerHelloDone

CertificateVerify

ClientKeyExchange

Finished

KeyUpdate (rfc8446)

MessageHash (rfc8446)

(I <IN R <

Change Cipher Spec protocol

Extensions

ServerName
MaxFragmentLength
ClientCertificateUrl
TrustedCaKeys
TrustedHmac
StatusRequest
SupportedGroups

https://www.rfc-editor.org/rfc/rfc5077
https://www.rfc-editor.org/rfc/rfc8446
https://www.rfc-editor.org/rfc/rfc8446
https://www.rfc-editor.org/rfc/rfc8446
https://www.rfc-editor.org/rfc/rfc8446

SignatureAlgorithms

UseSrtp

Heartbeat

ApplicationLayerProtocolNegotiation

SignedCertificateTimestamp

ClientCertificateType

ServerCertificateType

Padding

Reserved0

PreSharedKey

EarlyData
SupportedVersions

Cookie

PskKeyExchangeModes

Reserved1

CertificateAuthorities

OidFilters

PostHandshakeAuth

SignatureAlgorithmsCert

KeyShare

Not enumerated extensions (have to be found
in rfc):
EcPointFormats
SignedCertificateTimestamp
Renegotiationinfo
SessionTicket
NextProtocolNegotiation

ExtendMasterSecret

> LIMITATION

« TLSPGP is not supported (rfc50810)
« New Session Ticket is implemented related to
rfc5077 (rfc8446 has a different structure)

> NOTES

«+ CertificateVerify message
contains SignatureAndHashAlgorithm (rfc52
46) field which is the same
with SignatureScheme (rfc8446). Since that
field is different between tls1.2 and tls1.3 - it
has to be interpreted depending on flow
context (tls
version). SignatureAndHashAlgorithm::HashAl
gorithm and

SignatureAndHashAlgorithm::SignatureAlgorit
hm are not used in dissection to save that field
universal for 1.2 and 1.3 versions.

CertificateRequest and Certificate message
dissection are not supported. For extracting
base fields of certificates -

use tls_certificate in-built extension.

\. Presentation

None

N Application

® Telnet

> STATUS

Telnet rfc854 Fully basic, network, internet

> LAYER DETECTION METHODS

o Port-based

> PORTS
« 23 (tcp)
> FIELDS
IIIIIIEHI’IIIIIIIIHHHHIIIII!%HHHHIIIIIH:EIIIIIIIIIIIIIIIIIIlHHHHHHHHHIIIIIIIIIIIII
data byte- FEFFFFFFFFAFFSS Stream data.
sequence
root uint8 1 FEFFFAFFf e Payload data.

Slinkin Technologies, 2024

® DNS

> STATUS
rfc1035
DNS rfc3596 Fully basic, network, internet
rfc2874

> LAYER DETECTION METHODS

» Port-based
« Layer structure test

> PORTS
« 53 (udp/tcp)

> FIELDS

A two octet code that specifies the class
qclass uint16 2 e of the query. For example,
the QCLASS field is IN for the Internet.

rdata_cl uint16 2 FEFFEEFFRFEFE Specifies the class of the data in the
ass rdata.

prefix_n byte- 0 FEEFFEEFFEEFRFES The name of the prefix, encoded as a
ame sequence domain name.

address_s byte- An IPv6 address suffix, encoded in
uffix sequence (L AT network order (high-order octet first).

A prefix length, encoded as an eight-bit

preﬁ:ﬁlen uint8 1 e Fffree unsigned integer with value between 0
9 and 128 inclusive.
byte- A 128 bit IPv6 address in network byte
aaaa sequence s WAL order (high-order byte first).

Slinkin Technologies, 2024

bit_mask

protocol

wks_address

(O8]

os_length

cpu

cpu_Llength

null_data

address

minimum

expire

retry

refresh

serial

rname

rmailbx

byte-
sequence

uint8

uint32

ascii-string

uint8

ascii-string

uint8

byte-
sequence

uint32

uint32

uint32

uint32

uint32

uint32

byte-
sequence

byte-
sequence

A Fffeffff

FEFFFFFFFFEF i of

FFFFFF e ff

FFFFFFFF T ff

FEFFFFFFFFef i ff

i

FEFFFEFFFfffff

FFFFEFF T ff

FFEFEFFFf e of

FFFFFFFffffff

FFFFF A ff

i

i

T ff

FFEFEFFFfff

FFFFEFFFfffff

Bit map has one bit per port of the
specified protocol.

IP protocol number.

Internet address.

A character-string which specifies
the operating system type.

OS string length.

A character-string which specifies
the cpu type.

CPU string length.

Any data. Null section.

Internet address.

Minimum ttl field that should be
exported with any RR from this
zone.

Time value that specifies the upper
limit on the time interval that can
elapse before the zone is no longer
authoritative.

Time interval that should elapse
before a failed refresh should be
retried.

Time interval before the zone
should be refreshed.

Version number of the original
copy of the zone. zone transfers
preserve this value.

A domain name which specifies
the mailbox of the person
responsible for this zone.

A domain name which specifies a
mailbox which is responsible for
the mailing list or mailbox.

exchange

preference

ptrdname

newname

mgname

chame

mf_madname

md_madname

mb_madname

nsdname

rdata

rd_length

ttl

byte-
sequence

uint16

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

byte-
sequence

uint16

uint32

e ff

FFFFF AT ff

FFFFF e ff

FEFFFFFFFF e ff

FFFFF A ff

FREFEFEFEFEFEFF

FFFFEFFFfff

FFFFEFFF £ £ £

FFEFFFFFF A ff

FFFFF AT ff

FFFFF A ff

T ff

FFFFEFFFfff

A domain name which specifies a
host willing to act as mail
exchange for the owner name.

Specifies the preference given to
this RR among others at the same
owner.

A domain name which points to
some location in the domain name
space.

A domain name which specifies a
mailbox which is the proper
rename of the specified mailbox.

A domain name which specifies a
mailbox which is a member of the
mail group specified by the domain
name.

A domain name which specifies
the canonical or primaryname for
the owner.

A domain name which specifies a
host which has a mail agent for the
domain which will accept mail for
forwarding to the domain.

A domain name which specifies a
host which has a mail agent for the
domain which should be able to
deliver mail for the domain.

A domain name which specifies a
host which has the specified
mailbox.

A domain name which specifies a
host which should be authoritative
for the specified class and domain.

A variable length string of octets
that describes the resource.

Specifies the length in octets of
the rdata.

Specifies the time interval (in
seconds) that the resource record
may be cached before it should be
discarded.

rdata_type

domain_name
_offset

domain_name
_pointer

domain_name
_label

domain_name
_label_length

domain_name

authority_reco
rds

answers

qtype

gname

query

queries

arcount

uint16

uint16

uint16

ascii-string

uint8

byte-
sequence

byte-
sequence

byte-
sequence

uint16

byte-
sequence

byte-
sequence

byte-
sequence

uint16

FFFFFFF e ff

3fff

FFFFF AT ff

e ff

FFFFFF A ff

FFEFFFEFEFEFEFEF

FFFFEFFFEFFFFFF

FFEFEFEFEFEFEFF

FFFFEFFFfffff

e ff

FEFFFFFFFFFF i of

FFEFEFFFf e of

FFFFEFF i ff

Specifies the meaning of the data
in the rdata.

A domain name offset.

A domain name pointer.

A domain name label.

A domain name label length.

A domain name to which this
resource record pertains.

Authority records section.

Answer section.

A two octet code which specifies
the type of the query. The values
for this field include all codes valid
for a TYPE field, together with
some more general codes which
can match more than one type of
RR.

A domain name represented as a
sequence of labels, where each
label consists of a length octet
followed by that number of octets.
The domain name terminates with
the zero length octet for the null
label of the root. Note that this
field may be an odd number of
octets; no padding is used.

Query record.

Question section.

An unsigned 16 bit integer
specifying the number of resource
records in the additional records
section.

nscount

ancount

gdcount

rcode

ra

uint16

uint16

uint16

uint16

uint16

uint16

2

2

2

FFFF e ff

FFFFFFF e ff

e ff

70

80

An unsigned 16 bit integer
specifying the number of name
server resource records in the
authority records section.

An unsigned 16 bit integer
specifying the number of resource
records in the answer section.

An unsigned 16 bit integer
specifying the number of entries in
the question section.

Response code - this 4 bit field is
set as part of responses. The
values have the following
interpretation: O (No error
condition), 1 (Format error - The
name server was unable to
interpret the query), 2 (Server
failure - The name server was
unable to process this query due to
a problem with the name

server), 3 (Name Error -
Meaningful only for responses
from an authoritative name server,
this code signifies that the domain
name referenced in the query does
not exist), 4 (Not Implemented -
The name server does not support
the requested kind of

query), 5 (Refused - The name
server refuses to perform the
specified operation for policy
reasons. For example, a name
server may not wish to provide the
information to the particular
requester, or a name server may
not wish to perform a particular
operation (e.g. zone transfer) for
particular data), 6-15 (Reserved for
future use).

Reserved for future use. Must be
zero in all queries and responses.

Recursion Available - this be is set
or cleared in a response, and
denotes whether recursive query
support is available in the name
server.

rd

tc

aa

opcode

mname

qr

txt

record

txt_length

uint16

uint16

uint16

uint16

byte-
sequence

uint16

ascii-string

uint16

byte-
sequence

uint8

100

200

400

7800

FEFFFFFFFFeF i ff

8000

FEEFEFEF T

FFEFEFF A ff

T ff

FFFFF e ff

Recursion Desired - this bit may be
setin a query and is copied into
the response. If RD is set, it directs
the name server to pursue the
query recursively. Recursive query
support is optional.

TrunCation - specifies that this
message was truncated due to
length greater than that permitted
on the transmission channel.

Authoritative Answer - this bit is
valid in responses, and specifies
that the responding name server is
an authority for the domain name
in question section.

A four bit field that specifies kind
of query in this message. This
value is set by the originator of a
query and copied into the
response. The values

are: 0 (standard query), 1 (inverse
query), 2 (server status

request), 3-15 (reserved for future
use).

A domain name of the name server
that was the original or primary
source of data for this zone.

Bit specifies message type. Query
(0), response (1).

One or more character string(s).
are used to hold descriptive text.
the semantics of the text depends
on the domain where it is found.

A 16 bit identifier assigned by the
program that generates any kind of
query. This identifier is copied the
corresponding reply and can be
used by the requester to match up
replies to outstanding queries.

Resource record

Txt string length.

dns_message_

length

additional_rec
ords

emailbx

root

uint16

byte-
sequence

byte-
sequence

uint8

FFEFEFFFf e of

FFFFEFFFfff i ff

i

i

Dns message length - is presented
only for tcp transport.

Additional records section.

A domain name which specifies a
mailbox which is to receive error
messages related to the mailing
list or mailbox specified by the
owner of the MINFO RR.

Payload data.

> FIELD TREE

+ Queries

L— queries/
— gname/
| —label-0
| — label-1
| ..
| —atype
| L—qclass
L— gname/

— label-0

— qtype

L— qgclass

¢ Resource Records

L— answers, authority_records, additional_records,
L— record/
F— domain_name/
| F— domain_name_label_length
| F— domain_name_label
| — domain_name_pointer
| L— domain_name_offset
— rdata_type
— rdata_class
— ttl
— rd_length
L— rdata

+ Queries

RData (Mb, Md, Mf, CName, Mg, Mr, Ptr)

L— rdata/
L— mb_madname, md_madname, mf_madname, cname, mgname, newname, ptrdname/
F— domain_name_label_length
F— domain_name_label
— domain_name_pointer
L— domain_name_offset

RData Mx

L— rdata/
— preference
L— exchange/
F— domain_name_label_length
F— domain_name_label
— domain_name_pointer
L— domain_name_offset

RData Minfo

L— rdata/
F— rmailbx/
| F— domain_name_Llabel_length
| F— domain_name_Llabel
| F— domain_name_pointer
| L— domain_name_offset
F— emailbx/
| F— domain_name_Llabel_length
| F— domain_name_Llabel
| F— domain_name_pointer
| — domain_name_offset

RData Txt

L— rdata/

— txt_length
L— txt

RData Soa

L rdata/
F— mname
— rname
— serial
— refresh
— Retry
— expire

L— minimum

RData A

L— rdata/
L address

RData Null

L rdata/
L null_data

RData Hinfo

L— rdata/
— cpu_Llength
— cpu

— os_length
L—os

RData Wks

L— rdata/
— wks_address

— protocol
L— bit_mask

AckRange

L— ack_range (Ack)

F— gap (Ack)
L— ack_range_length (Ack)

EcnCounts

L— ecn_counts (Ack)
F—ect_0_count (Ack)
— ect_1_count (Ack)
L— ecn_ce_count (Ack)

> NOTES

. Resource Records have Name field in rfc1035. « The following malformed reasons are suitable
Our engine uses DomainName field. for all fields which have domain-

« NsDname, MadName, CName, MgName, NewN name structure:
ame, PtrDname have domain name structure. It + DnsDomainNameHaslnvalidFormat
means that fields have children fields such » DnsDomainNameFirstOctetCannotBeDissec
as DomainNameLabelLength, DomainNameLab ted
el, DomainNamePointer, DomainNameOffset. + DnsDomainNamePointerCannotBeDissected

« Due to rfc1035, MadName field is presented in » DnsResourceRecordHeaderCannotBeDissec
the following RData sections: Mb, Md, Mf. To ted
don't use the same name for different RData + DnsResourceDatalengthExceedDatalength
sections and don’t check the parent objects to + DnsDomainNamelLabelLengthExceedDatale
detect a type, our engine ngth
uses MbMadName, MdMadName, MfMadName « DnsDomainNameOffsetExceedDatalength
field names.

® MDNS

> STATUS
MDNS rfc6762 Fully basic, network, internet

> LAYER DETECTION METHODS

« Port-based
« Layer structure test

> PORTS
« 5353 (udp/tcp)

Slinkin Technologies, 2024

> FIELDS

ALl DNS fields are valid for MDNS as well. But
there are new fields which are presented below.

1 bit unicast response flag. When this bit
. . is set in a question, it indicates that the
unicast_re = 16-bit- S :
2 8000 querier is willing to accept unicast
sponse field . .)
replies in response to this specific query,
as well as the usual multicast responses.

cache_fl 16-bit- Announcements to flush outdated cache
2 8000 :
ush field entries.
> FIELD TREE
All DNS field tree structures are also valid for used instead of gclass and cache_flush is used
MDNS. The main difference is unicast_response is instead of qclass
> NOTES

» From the dissection point of view, MDNS is
almost the same as DNS. All DNS notes belong
to MDNS as well.

® HTTP

> STATUS

rfc1945(HTTP/1.0)

HTTP rfc2626(HTTP/1.1) Fully basic, network, internet
rfc7231(HTTP/1.1)

Slinkin Technologies, 2024

> LAYER DETECTION METHODS

« Port-based
« Patterns
« Layer structure test

> PORTS
« 80 (tcp)

> PATTERNS

HTTP request methods are used for protocol
pattern detection:

« GET

« POST

« HEAD

« PUT

« DELETE

« CONNECT

+ OPTIONS

+ TRACE

+ COPY

+ LOCK

+ MKCOL

+ MOVE

« PROPFIND
+ PROPPATCH
+ SEARCH

+ UNLOCK

« BIND

« REBIND

« UNBIND

« ACL

+ REPORT

« MKACTIVITY
« CHECKOUT
+ MERGE

« PATCH

+ PURGE

+ MKCALENDAR
+ LINK

« UNLINK

+ SOURCE

> FIELDS

IIIII!II’IIIIIIH!H!IIlEHHHIIIII!H!IIIIIIIIIIIIIIIIH%%HHHHIIIIIIIIIIII

trailer

chunk_data

chunk_extens
ion

chunk_size

chunk

body

header

version

reason_phrase

status_code

uri

method

root

ascii-
string

ascii-
string

ascii-
string

ascii-
string

ascii-
string

ascii-
string

ascii-
string

ascii-
string
ascii-

string

ascii-
string

ascii-
string

ascii-
string

uint8

FFEFFFEFFFEFEFEF

T EF £ £ £ £ £ £

FEEFEFEFEFEFEFEF

FEFFFFEFEFEFEFEF

FFEF e ff

FEFFFFEFFFEFEFEF

e ff

FEEFEFEFFF £ £

A fff

FFEFF o ff

FFFFFFF e ff

FEEFFFEFFFEFEFF

FFFFFFFffffff

The trailer field allows the sender to
include additional HTTP header
fields at the end of the message.

The data part of chunk.

The part of chunk size line. Optional
field.

The string of hex digits indicating
the size of the chunk.

The part of HTTP body. The field is
presented when Transfer-Encoding
header has ‘chunked’ value.

HTTP message body.

An HTTP header consists of its case-
insensitive name followed by a colon
(:), then by its value. The fields pass
additional context and metadata
about the request or response.

The version of an HTTP message.

The part of HTTP response status
line which describes status code.

The part of HTTP response status
line which is presented as a 3-digit
integer number of the attempt to
understand and satisfy the request.

The part of HTTP request line which
describes the exact location of a
page, post, file, or other asset.

The method token indicates the
method to be performed on the
resource identified by the Request-
URI.

Payload data.

> LAYER DETECTION METHODS

« HTTP 1.0 RFC suggests few default request
methods. HTTP 1.1 RFC has a bit more default
methods. Since each of specification allows to
extend HTTP method - dissection process
doesn't validate method name is suitable for
specific HTTP version.

« HTTP 1.0 has Simple-Response format of
response. It doesn’t have any HTTP RFC
patterns and requires to cache HTTP request. If
client sends Simple-Request server must to
reply with Simple-Response. Packet library
doesn’t cache any data and because of that
such answers cannot be properly dissected.

« HTTP 1.1 requires to have Host header in
requests. Packet library doesn’t check that. It
dissects just a structure of HTTP message.

Packet library strongly follows RFC. If RFC
describes only 1 SP char between tokens -
dissection process will expect only 1 SP. Not
duplicated, not any count of LWS.

If Content-Length has invalid value - the rest of
data is dissected as HTTP Body.

Calling GetNextLayer of HTTP layer doesn’t
dissect a layer, but it doesn’t validate chunk-
extension and trailer parts of chunked body.
First HTTP line and HTTP header are validating.
Dissect expects only one space separator in
HTTP first line, but GetNextLayer allows any
space char count between tokens.

HTTP Body decode is not supported.

® SSDP

> STATUS

draft-cai-ssdp-v1-02
draft-cai-ssdp-v1-03

Ssdp

Fully basic, network, internet

> LAYER DETECTION METHODS

« Port-based
« Patterns
« Layer structure test

> PORTS
. 1900 (udp)

Slinkin Technologies, 2024

https://www.ietf.org/archive/id/draft-cai-ssdp-v1-02.txt
https://www.ietf.org/archive/id/draft-cai-ssdp-v1-03.txt

> PATTERNS

SSDP request methods are used for protocol
pattern detection:

+ M-SEARCH
« NOTIFY
« SUBSCRIBE
« SSDPC

> FIELDS
ALl HTTP fields are valid for SSDP as well.

@ Dropbox

> STATUS

Dropbox Lan Sync
Dropbox Lan Sync Absent Fully basic, network, internet
Discovery

> LAYER DETECTION METHODS

« Port-based

> PORTS

« 17500 (udp/tcp)

> FIELDS

Data payload (it should have json format

data R 0 ik with "host_int’, ‘version’, ‘displayname’,
sequence . ']
port’, 'namespaces’ fields).
root uint8 1 FFFFF T ff Payload data.

Slinkin Technologies, 2024

73 slinkin.tech

